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Abstract.- A shooting method is presented for finding the n elgenvalue and

eigenfunction of a Sturm-Liouville equation, in which the elgenvalue occurs

nonlinearly. The method is verified in two ways: by applying the Sturm com-

parison and oscillation theorems to the continuous problem; and by applying

Sturm sequences to a discretization. The method works for general (separated)

boundary conditions, and provides an a-posteriori error estimate for the

approximate eigenvalue. Analogues of the Sturm comparison, oscillation and

separation theorems are proved for the discrete problem. A related method,

which involves critical lengths in the invariant imbedding method, is shown to

be incorrect for general boundary conditions.
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1. Sturm-Liouville Equations.

Consider the Sturm-Liouville eigenvalue problem

(p(x,A)u')' + q(x,A)u = 0, for 0 S x S 1,

(I.I)I:a(A)u(O) + $o(A)u'(O) = 0.

(1.1) aA)u(O) + 1()u'(O) = 0,

The main objective of this paper is to present a shooting method for the

eigenvalues and eigenfunctions of (1.1), and to prove its validity. The

method Is based on oscillation, and Is related to the critical (or character-

Istic) lengths in the invariant imbedding method. However, a simple counting

of critical lengths does not produce a correct algorithm (for general, sepa-

rated boundary conditions). We shall discuss this in detail in §6. Our

th
method can aim for the n eigenvalue without consideration of other elgen-

values. It provides an a-posteriori error estimate for the approximate eigen-

* value. The method Is a generalization of that used by Porter and Reiss [131,

[141, for the problem

(-Au°(x))2] + [ 2 =0 , for 0 S x : d,(12 )2;kox) (WAuO W) 2 " I

"co

'u(O) = 0 = u'(d),

which arises In acoustics. (Here, u (x) is a given function.)

The shooting method will be described in §2, and its validity will be

proved using the Sturm comparison and oscillation theorems. The problem will

be discretized In §3, and another verification of the shooting method will be Li

given in §4, by applying Sturm sequences to the discrete problem. This pro- . .

cess of "taking the limit" of a numerical method (applied to a discretization)

V is sometimes referred to as finding a "closure of an algorithm" (see

I. 1



Babuska [11). Such closures give insight into the numerical method, and often

lead to more flexible and adaptable procedures than the finite difference or

finite element method. An example of this is the double sweep method (see,

for example, Babuska, Prager and Vitasek [4], Babuska and MaJer [2], Keller

and Lentini [12]). In §5, analogues of the Sturm comparison, oscillation and

separation theorems will be given for the discrete problem. In §6, we provide

a cautionary note concerning a related shooting method which can fail,

although its appearance of validity Is seductive.

We shall need to make certain assumptions about the coefficient functions

in (1.1). As indicated below, these occur in three categories. The standard

assumptions will always be implicitly assumed without mention. The monotoni-

city and limit assumptions occur In the Sturm comparison and oscillation

theorems. They will be explicitly assumed when needed. In the following, A

will vary in an interval (A ,A 2) We do not exclude the possibilities

A1  = - , A2  = O.

Standard Assumptions

(Sl) p(x,A), 8-p x,A) and q(x,A) are continuous functions on

[0,i]x(A, A2 ).

(S2) p(x,A) 2 k > 0, for 0 - x : 1, A1 < A < A2.
(S3) a 0 (A), f3 0 (A), aI(A), 1 (A) are continuous on (A1,A2).

(S4) i(A) 2  1 (A)2 * 0, for I = 0,1 and A I < k < A2 .

(S5) For I = 0,1, either pi(A) a 0 or (A) > 0, for A < A < A2 .

Monotonicity Assumptions

(Ml) For each x, q(x,X) Is a strictly Increasing function of A.

(M2) For each x, p(x,A) is a nonincreasing function of A.

(,If A+ A in (L3), then we assume that (S5) is valid for A 1 A < A2 .

2
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(M3) If 1O(A) 9 0, then p(O, A)"o) is a nondecreasing function.
(A)

(M4) If 9l(A) * 0, then p(O,Xv') is a nonincreasing function.

We shall use the following notation:

p (A) = max p(x,A), p,(A) = min p(x,A),

(1.3) Oxl Ox:1

q (A) max q(x,A), q,(A) = min q(x,A).
Ox: 1 Ox51

Note that p (A) > p,(A) > k > 0, by assumption (M2).

Limit Assumptions

q.(A)
(Li) lim - =

A -A 2  P * " )

(L2) lim q (A) =
-'A-*A p- F(A)

1

(L3) There is a number A in (A1 ,A2), so that a0 (A+ )9 (A: 0,
+ 2)0+ 0+

a1 (A +)1 (A +) 0, and q (A+) 5 0. (If the coefficient functions in

(1.1) can be extended continuously to A = A , we may take A+ = A )()

Note that assumption (L3) implies that for A = A the operator in (1.1) is

negative semidefinite.

Remark. In the acoustics problem (1.2), q(x,A) is a decreasing function of. ,t

A, and p(x,A) is an increasing function of A, if w > 0, u (x) > 0 and

W-Au0 (x) > 0. However, the shooting method is valid if the words

"increasing" and "decreasing" are Interchanged in assumptions (Ml) - (M4),

while A and A are interchanged in assumptions (Li) - (L3).
*1 2

We shall conclude this section by recalling the Sturm comparison and

oscillation theorems. These theorems (with somewhat different notation) can

be found in Bocher (5, Chap. 31 and Ince [10, Chap. 10]. The comparison %'

(.If A+ = A in (L3), then we assume that (S5) is valid for A < A < A
*1 2' 1

It 3
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theorems deal with the initial value problem obtained from (1.1) by omitting

the boundary condition at x = 1. This can be formulated as follows:

(p(x,A),u')' + q(x,A)u = 0, for 0 : x 5 1,
(1.4)

(0)= 0O(A), u'(O) = -a 0 A).

Let u(x,A) denote the solution of (1.4). Note that (for fixed A) the

zeros of u(x,A) are simple, since (1.4) is a second order differential

equation.

Theorem A (First Comparison Theorem). Suppose that (1.4) satisfies the

monotonicity assumptions (Ml), (M2), and (M3). Then, for A < A Cx A

has at least as many zeros as u(x,A I) in the interval 0 < x : 1, and the
th th eo fuxh)
I zero of u(x,A2 ) is less than the ith zero of u(xA

Theorem B (Second Comparison Theorem). Suppose that (1.4) satisfies the

monotonicity assumptions (Ml), (M2), and (M3). Let 0 < x0 5 1, and suppose
90

that u(xoA) 0 for AI < A < A Then p(xoA)U( XA) is a strictly
0'~~ 1X 0' u -7

decreasing function of A In the interval A1 < A < A2 .

Remark 1. The comparison theorems are usually stated in terms of two differ-

ential equations:

(1.5|(po(X)U;)' + qO(X)uo = 0, for 0 S x : 1,

u (0) = 00 uo'(0 ) = -a,

and

(pl(x)u')' + q1(x)ul = 0, for 0 5 x 5 1,
(1.6) 1

S (0 ) = 91' Ul(O) =-al

where it assumed that

4
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(1.7) po(X) 2 p1 (x), q0 (x) < q1 (x) nd po(0)o : P1 (0)!!'

(For the second comparison theorem, we also assume that Uo (x) and u (x)

have the same number of zeros in the Interval (O,X0 ), and u 0 N) 0,

u1(X0 ) * 0.) However, the equations (1.5) and (1.6) can be embedded In a

continuous family of equations:

(p(x,A)u')' + q(x,A)u = 0, for 0 5 x : 1,
(1.8)

.uC=O) (A), u'(0) = -a(A),

which satisfies the monotonicity assumptions (Ml), (M2), and (M3) for

0 5 A : 1, and such that p(x,O) = poCX), q(x,O) = qoCx), p(x,1) p WCx),

q )0( o = and -D' We can take

p(x,A) = (1-A)po(X) +Ap1 X), q(x,A) = (1-A)qO(x)+ Aq1 (x), and choose c(A),

M(A) so that I.

P(n, M A)C -= ( - ) ° P
13 A 1 13,

Namely, take a(A) = (1-A)p0(O)a 0 13 1+Ap 1(O)a 1 , and P(R) = 3 1P(OA). It

* then follows that the solution u(x,A) of (1.8) satisfies

(1.9) u(x,O) = CoUo(X), u(x,l) = clul(x), .

where co =o , = P (0)9 Thus u(x,O) and u (x) have the same

number of zeros in (0,1), as do u(x.1) and u x) Also

II
u(x,O) u i(x)

p(x,O) u, )- PI(XW-77 ' for 0 :5 x < 1. We shall feel free to use either

form of the comparison theorems.

Remark 2. If the strict inequality q0 (x) < q1 x) is changed to

qOW S q(x) In (1.7), then the conclusions are changed analogously: the
0 1U

first comparison theorem concludes LiaL u Cx) has at lea-i as many zeros as

5

%'
%_ .% -.- "- - ',- .. ' ' "%-.- -% '.• % -. % .. % " .* .. , . -.. . . . % % , * % % %, * 'U



u0 (X) in the interval 0 < x : 1, and the it h  zero of u (x) is less than

th
or equal to the I zero of u 0X). The second comparison theorem concludes

u (xo )  u(x o )
that p1 (X 0- x 0 p1(x0) x0

Theorem C (Oscillation Theorem). Suppose that (1.1) satisfies the monotoni-

N. city assumptions (Ml)- (M4) and the limit assumption (Li). Then the eigen-

values of (1.1) form an Infinite, increasing sequence A < A < ....

which tends to A The elgenfunction Vk(X), corresponding to Ak' has

exactly k-i zeros in the interval (0,1). Furthermore, suppose that (1.1)

satisfies either the limit assumption (L2) or (L3). Then the sequence of

elgenvalues begins with Al. whose elgenfunction v1 (x) has no zeros in

(0,1).



2. A Shooting Method for Elgenvalues and Eigenfunctions.

An elgenvalue of (1.1) will be denoted Ak' and called the k t h egen-

value, if its corresponding elgenfunction i k(x) has exactly k-I zeros

in (0,1). This notation has already been used in the Sturm oscillation

theorem, which gives sufficient conditions for Ak to exist for large k, or

for all k 1.

Definition 2.1. For a given A in (AA 2), let u(x,A) denote the solu-

tion of the Initial value problem (1.4). Furthermore, let

(1) N (A) be the number of zeros of u(x,A) In (0,1),0

(2) uCA) = (kA)u(l,A) + R (A)u'(1, A),

(3) o(A) = If u(,A);u(A) > 0 or u(A) = 0,

1 If u(l,A)u(A) 5 0 and u(A) 0,

(4) N(A) = N (A) +o-(A).0

Remark. In the above formulation, N(A) is the number of zeros of u(x,A)

In (0,1), with a correction which depends on the boundary condition at

x = 1. If R 1(A) 9 0, an equivalent formulation is: N(A) = M (A) +p(A),

where M (A) is the number of zeros of u(x,A) in (0,1], and
0

P(A) = if u(1,k)U(A) 2 0

If u(l,A)u(A) < 0.

The shooting method will use the oscillation counter N(A) In an essen-

tial way. The following theorem gives the main properties of N(A).

7
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Theorem 2.1 (Shooting Theorem). Suppose that (1.1) satisfies the monotoni-

city assumptions (Ml) - (M4). Let A' < A" be numbers in (AA2

Then:

(1) The interval [A',A") contains exactly N(A")-N(A') elgenvalues of

(1.1).

(2) If N(A') = j < k = N(A"), then the eigenvalues AJ+,A J+2 ... , Ak

exist, and A' AJ+ < Aj+ 2 < ... < Ak < A".

If (1.1) also satisfies either the limit assumption (L2) or (L3) then

(3) For A < A < A (1.1) has exactly NCA) eigenvalues in the interval
1 2'

[A1 , A)(

The proof of this theorem Is closely intertwined with the proof of the

Sturm oscillation theorem. We shall begin with a short discussion and two

lemmas, which will lead to the proof of the theorem.

% Let u(x,A) be the solution of the initial value problem (1.4). Sturm's

first comparison theorem states that, as A increases, u(x,A) does not lose

zeros. It may acquire new zeros, which first appear at the endpoint x = 1,

thand move toward x = 0. Suppose that the k zero appears when A = p

The pk form an increasing sequence m < 1m+l < ... (possibly a finite, or

even empty sequence). The solution u(x,A) has exactly k-i zeros in

(0,1), for pk-l < A 5 P (assuming that k-i and k exist). The second
4 'l A)k1

comparison theorem implies that p(lA) is a strictly decreasing func-comprisn teorm imlie tht pl~ku(l,A)

tion for pk-l < A < Pk' Clearly, this function decreases from w to -co.

If the coefficient functions in (1.1) can be extended continuously to
A =Al then A' may be taken In [AA).

The interval [A1 ,A) in conclusion (3) may be replaced by (AVA) unless

A = A = A in asssumption (L3). See the remark after Lemma 2.2, below.
+ 1 1

'p 8
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On the other hand, the monotonicity assumption (M4) states that p(i, A)alA

is a nonincreasing function (assuming that 0 (A) * 0), so that -p(, A) C ,

is a nondecreasing function. Therefore there is a unique number Ak ,

< A < jk, such that for A =A, P(IA)I'u(1,A) = -p(,A) alA) or
kl k k* ko 7-,A th 1 (-A

a (A)u(1,A) +3 1(A)u'(iA) =0. Thus A = Ak  Is the ktheienvalue of

(1.1).

Note that if p13(A) 0., then Ak = Pk is the kt h  elgenvalue. In

this case (CA) is always zero, and N(A) = N (A). Thus N(A) = k-I, for0

Ak-1 <A Ak

Lemma 2.1. Suppose that (1.1) satisfies the monotonicity assumptions

(Ml) - (M4), and g1 (A) 0 0. Then N(A) = k- I for 1k-1 < A 5 Ak, and

N(A) =k for Ak < A 5 k"

u'(l,A)
Proof. Because p(1,A) u(,A) is a strictly decreasing function in the

interval Jki < A < and -p(1, A) -c-(A) is a nondecreasing function, we
Pk-1 A <Ak f31(AT

see that u'(,A) > -p(1,A)lcA) for pk- < A < Ak, and
u'C1 A) )

p(1,A)uCIA) < -pCI,A)a ) for Ak < A < 1k" This implies that

13(A)u(1,A)[M (A)u(i,A)+f3C(A)u'(l,A)] > 0 for i < A < A and
1 ' 1 1 k-i < <Ak'

Cil(A)u1,A)[ (A)u(,A) +<f ()u'(1,A)] < 0 for Ak < A < Ak' Recalling that

(A) > 0 and uCA) = a1 (A)u(I,A) +131 (A)u'(1,A), we see that

u(l,A)u(A) > 0 for ik-i < A < A and u(1,A)u(A) < 0 for Ak < A < Ak'

Referring to Definition 2.1, we see that -CA) = 0 for pk-1 < A S Ak' and

-A) = I for Ak < A S Pk" Since N (A) = k-I for Pk-I < A S Pk and

N(A) = N (A) +o(A), it follows that N(A) = k- i for k-i < A A, andok

N(A) = k for A < A : Q.E.D.
%k k

9 (



Lemma 2.2.

(1) If (1.1) satisfies the monotonicity assumptions (M3), (M4) and the

limit assumption CL2), then N(A) = 0, for A near A1 .

(2) If (1.1) satisfies the limit assumption L3), then N(A ) 0.

Proof. (1) We shall use the first and second comparison theorems to compare

the equations

(p(x.A),u')' + q(x,A)u = 0, for 0 5 x 5 1,
(2.1)

u(O) = po(A), u'(0) = -a0 (A).

and
mp

Cp.(A)v')' + q (A)v = 0, for 0 : x : 1,

.v((O) = 13M , v'(Q) = -a,

where

(2.3) a P(,Ao)o(Ao), R(A) = pCA)1O(AO).

Here, A0  is a fixed number in (AI,A 2 ), and A1 < A < A0. (See (1.3) for

the notation p,(A) and q CA).) Note that p(x,A) p*(A), q(x,A) 5 q (A),

and by monotonicity assumption (M3),

p(0,A)a-o(A) 5 P(OA )a o(Ao) = p(O,Ao)ao(Ao) 00 ap(O, ) 0 30 A0  = = P()c)f' O'k fo---O) P" -p ( A-0(7o P 9-T -A-)

Therefore the comparison theorems apply (as In Remark 2 after Theorem B In

-. §1). Thus, u(x) does not have more zeros than v(x) in (0,1], and

p(l,u(1) > p.(A)m) if u(x) and v(x) have the same number of zeros
UMv(1)

in (0,1) and u(1) * 0, v(1) 0 0. (We are sometimes suppressing the A,

and denoting u(x,A) = u(x), v(x,A) = v(x).)

The limit assumption (L2) states that lim q (A) Therefore, for

.0

10



ner q (A )  2qA near Al -) -s , where s = s(W) = , and lim s(A) =

'p A- A1

Equation (2.2) is equivalent to

rv" - s 2 v 0
(2.4) 1v(0) = (, v'(O) = -a,

whose solution is

(2.5) v =3 coshsx-a sinhsx.
s

Recall that either g30(A) a 0 or RO(A) > 0. If %O(A) 0 0, then

P(A) = p 0(A)%OAO) = 0 , and a = p(O,Ao )(A0 ) 0. In this case

v = -- sinhsx has no zeros in (0,1], so u doesn't have any zeros there5

either. If g0(A) > 0, then 3> O. In fact, (3 is bounded away from 0,

because the standard assumption (S2) implies that p,(A) a k > 0, so

3(A) = p.(A)M0(A0 ) - ko(AO) > 0. Since coshsx > sinhsx, and s-- as

A-A this shows that v = g cosh sx-s 0 sinhsx > 0, when A is near

A,. Again, this implies that u has no zeros in (0,1]. Thus we have shown

that for A near All N (A) = 0 (and u(l,A) 0 0, v(l,A) * 0).

We shall now consider -(A). If gl(A) a 0, then o-(A) = 0 by defini-

tion. Therefore we may assume O(A) > 0.

)v'(1,A) ,A)s3 tanh s - (/s)
p.(A)vl) =p 13(s - (W/s) tanh sJ"

Recalling that p,(A) > k > 0, it is clear that p,(A) v(1, A)
- v( 1, A) - w as

v'(1,A))
A-(A Since p(lA)u,) > (.A) we also haveV-AI Sic( ,A,) - p(A v1,A)'

V'(1,1)

p(l,A) (1,A) --4 as A-A On the other hand, by monotonicity assumption
a,(A) V(o

(M4), -p(1,(A)(- < -p(l,Ax )-- for A < A0 " Therefore, for A near

A , u'(l,A) > -p(l,A)17A and

u(1,A)u u(lA)[1 ()u( >0.uC1,A) ) = u 1 [( u1,A)+ 3iCA)u'(1,A)] >O

11
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This shows that (A) = 0 for A near A Therefore

N(A) = N oA)+o-(A) = 0, for A near AI.

(2) We shall compare the equations

(2.6) (p(x,A+),u')' + q(x,A+)u = 0, for 0 : x 5 1,

(u(O) = 3 (A+), u'(O) =

and

((p,(A+)v')' + q (A+)v = O, for 0 S x 1,
(2 .7 )+

lv(O) = 0(A), v'(O) = -,

where

(2.8) a =p(O,A)aO(A+), 0 = p.(A+)00 (A+).

Since p(x,A+) 2! p1 (A+), q(x,A+) < q (A+) and p(0,A+) a p, (A+ ), the

first and second comparison theorems apply. By assumption CL3), q +) O.

q (A.) -s 2 whr s q (A+)
Therefore . + 2 here s = - ,and equation (2.7) is equiva-

lent to

(2.9)2

lv(O) = , v'(O) = -a,

whose solution is

(2.10) v = 13 coshsx- sInhsx, if s > 0,

or

(2.11) v = -(Xx+13, If s = 0.

By assumption (L3), a (A+ )3 (A+ ) 0, which implies that a3 S 0. (Of

course, a and 03 cannot both be zero.) Therefore (2.10) and (2.11) show

that v(x) has no zeros in (0,1]. Consequently u(x) has no zeros In

12
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(0,1], and N (A ) = 0.

If s > 0, then p,(A V =)v'(1) - r tanh s - /s) > 0, since
+ v - pA+s L - (as) tanh sj

a48 0. If s = 0, then p1(A+ v-T
- = p,(+) 0. Since

u' v1) U'(1)
p(1, + )u'(() > v-)v') - this shows that p(l,A+ ) ; ' 0. On the other+ iiilT + U-(TY'
hand, a1 (A +)1 A +) 0 by assumption (L3). This implies

al (X+) u'(I,A ) 0C - l + (X+)Cl0,+) 0 so that p(l,A) u A+) > -p1, (+ , and

u(l,A+)u(A+) = u(I,+)[ 1 (A+)u(,A + ) + 1 (A+)u'0(,k+) 1 O. Noting that

u(1,?L) * 0, this shows that a-(A+) = 0. Therefore

N(A +) = N (A+ ) + (A+) = 0. Q.E.D.

Remark. By the previous lemma, if (1.1) satisfies the limit assumption (L3),

then N(A +) = 0. If (1.1) also satisfies the monotonicity assumptions

(Ml) - (M4), and A1 < A+, then N(A) = 0 for A1 < A < A. This will

follow from Theorem 2.1 (1), which implies that N(A) is a nondecreasing

function. Also, if AI < A1 then N(A) = 0 for A1 < A < A This will

follow from Theorem 2.1 (3). However, it can happen that A+ = A, = AI . In

this case, N(A) = 1 for A near A An example of this is the Sturm-

Liouville problem

+ A2u =0, for 0 5 x 5 1,
(2.12) f
where A, = 0 5 A < = A2  In this case, the first elgenvalue is

A, = 0 = Al, with eigenfunction V1Cx) = 1.

Proof of Theorem 2.1.

(1) Suppose that R1 (A) 9 0. THen Lemma 2.1 implies that N(A) is a

plecewise constant function with jump discontinuities at the points

Ak : N(Ak+C) = N(Ak) + 1, N(Ak-e) = N(Ak). Therefore, for A' < A" in

13



(A,,A2)' N(A")-N(A') equals the number of Jump discontinuities of N(A) in

[A',A"), which equals the number of elgenvalues in [A',A"). If (CA) R 0,

then the same is true, but the eigenvalues are A = P I
k k'1

(2) Suppose N(A') = J < k = N(A"). By (1), there exist exactly k-J

eigenvalues in the interval [A',A"). If (I(A) 0 0, then Lemma 2.1 implies

that A' 5 A J Ak < A". The same is true if (I(A) 0 0, where the elgen-

values are Ak=k. Thus A' A < A < ... < A < A". (If J+1 = k,
k=Ik*j+1 J+2 k

this sequence contains only one eigenvalue.)

(3) Lemma 2.2 implies that there exists AO, A l  A 0 < A2 , such that

N(AO ) = 0. (We may assume A 1 < AO, unless A+ = A, = A In this latter

case, conclusion (1) remains valid if A' = A1 ) If A < AO , then (1)

implies that there are no eigenvalues in the interval (AA ), and N(A) = 0
10

for A1 < A < A Thus (3) is true for A1 < A 5 AO .*

We now drop the assumption A1 < A0 and assume A0 < A. Any eigenvalues

in [A1,A) are contained in [AoA), and the number of these elgenvalues is

N(A)-N(AO ) = N(A). Q.E.D.

Remark. The Sturm oscillation theorem implies that if (1.1) satisfies the

monotonicity assumptions (Ml) - (M4) and the limit assumption (Li), then

lim N(A) = w.

We can now describe the shooting method.

STEP 0. Find values L0 < RO, such that N(LO ) = n- i and N(RO ) = n.

This implies that L o An < RO0

STEP k. For given values Lki < Rki1 with N(Lk) = n- i, N(Rk I) = n,
k-1 k-1- k-i -

find values Lk,Rk,, such that N(L k ) = n- i, N(Rk) = n,

L k-1 L k < Rk : Rk-l, and Rk - Lk < Rk-l -Lk-l"

14
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STOP when Rk - Lk : T, where T is a given tolerance.

To implement the above steps, we need an initial value solver to compute

the solution u(x,A) of (1.4), when A = LkR k. This allows us to calculate

N(Lk ) and N(Rk). We also need a nonlinear solver to calculate the new

values Lk+1,Rk+ 1. We have in mind a combination of the bisection method for

the integer function N(A), and some other method (such as the secant method)

for the continuous function uCA) = 1(A)u(l,A)1 13 1 u'(1,A). Denoting

Mk = (Lk+Rk)/
2 , the bisection method would set Lk+ 1 = Lk, Rk+1 = Mk if

N(Mk) = n, or Lk+1 = Mk, Rk+1 = Rk if N(Mk) = n-i. The other part of

the solver would be an iterative method to solve u(A) = 0. The approximate

eigenvalue An will be either the midpoint of the last interval [Lk,Rk], or

the last approximation A found by the iterative method. The approximaten

eigenfunction V (X) will be the solution of (1.4), with A = A . Usually,

this will have been calculated already, and no further work will be needed.

STEP 0 can be carried out either by using estimates of An  which the user

might have, or by using a related boundary value problem whose elgenvalues are

known.

Assuming that the initial value problems are solved exactly, the method

gives a sharp a-posteriori error estimate for the elgenvalue A . Of course,n

the differential equations will be solved numerically. An effective implemen-

tation of this method must relate the accuracy of the initial value solver

(governed by an input tolerance parameter) to the value Rk- Lk, and to the

accuracy of the nonlinear solver for finding LkRRk.

If we are only interested in the eigenvalue Ano and not the eigenfunc-

tion n(x), then we need only concern ourselves with the count of the zeros

of u(x,A) and the correction term o-. This can be obtained by solving

15



various transformed formulations (such as that used in the invariant imbedding

method).

The method resembles a count of the critical lengths in the invariant

imbedding method (see Scott [15, Chap. 5]). However, a simple count of the

critical lengths (with no correction term) does not produce a correct algo-

rithm, for general boundary conditions. We shall return to this point in §6.

Remark. We can obtain another version of the shooting theorem if the words

"increasing" and "decreasing" are interchanged in the monotonicity assumptions

(Ml) - (M4), while A1 and A2 are interchanged in the limit assumptions

LI) - (L3). In this case, the Sturm oscillation theorem would declare the

existence of a decreasing sequence of elgenvalues Am > A m+ 1 > Am+2 >

which tends to A There is no change in the definition of N(A). The con-
1,

clusions in the shooting theorem would be changed to the following:

(1) The interval (A',A"] contains exactly N(A')-N(A") elgenvalues

of (1.1).

(2) If N(A') = j > k = N(A"), then the eigenvalues A k+A' k+2 A . .

exist, and A' < A < A J-1 < ... < Ak+2 < A k+1 '"

(3) For A 1 < A < A (1.1) has exactly N(A) elgenvalues in the

interval (A,A2 ].

This version of the shooting theorem would apply to a Sturm-Liouville

equation such as the acoustics problem (1.2). This new version of the theorem

easily follows from the old version by considering the functions

p(x,A) = p(x,-A), q(x,A) = q(x,-A), aI (A) = I(-A) and 1 (A) = 1(-A).

16



3. The Discrete Problem.

In this section, we shall discretize the boundary value problem (1.1).

We shall generate a difference scheme by using finite elements. This is a

convenient method which guarantees a local O(h 2 ) error and a symmetric dif-

ference matrix. In §4, we shall apply Sturm sequences to the discrete

problem. This will lead to another proof of the shooting theorem, and will

account for the similarity between the shooting method and the Sturm sequence

algorithm.

Recall that the energy inner product B(u,v) = B(A;u,v) for the problem

(1.1) is given by

(3.1) B(u,v) = ao(A) ip(0A)u(0)v(0) + A)p(lA)u(l)v(l)

- o-_ pO__(O v( ) + a--- ( 1,A)1v 1

+f(Pu'v'-quv)dx.

10

A weak solution of (1.1) (for a fixed A) is a function u in the Sobolev

space H 1[0,1], such that

(3.2) B(u,v) = 0, for all v e H (0,1].

If (3.2) admits a nontrivial solution u x) for a particular value A = A0,

then A is an eigenvalue, and u (x) is a corresponding eigenfunction. (If
0 0

f30(A) a 0, then is set equal to 0 in (3.1), and H [0,1] is replaced
0( 130

by the subspace of functions v e H [0,1], such that v(O) = 0. The case

31(A) = 0 is treated similarly. We shall carry out the calculations in the

generic case ft0(A) 0, 1 (A) * 0.)

The problem will be discretized using piecewise linear functions, with

('Strictly speaking, the energy inner product for the operator in (1.1) is
the negative of the inner product (3.1). But this is irrelevant for the
equation B(u,v) = 0.

17
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uniform mesh h = 1/n. Consider the partition x0 < x1 < ... < xn of the

Interval [0,1] by the nodes x, = ih. The finite element space Sh Is the

space of continuous functions on [0,1] which are linear on each Interval

[x 1 1, x1 ]. The Inner product (3.1) will now be restricted to Sht and the

integrals In (3.1) will be approximated by quadrature formulas. We shall use
I

the midpoint rule for the integral f pu'v'dx, and the trapezoid rule for the

1 0
integral J quvdx. This defines an Inner product B h(uv) on Sh ' The

finite element solution is a function u e S such that

(3.3) Bh(u,v) = 0 for all v e Sh -

A basis voV ! .... v for Sh can be obtained as follows:

(3.4a) Vo0(x) = -x/h+1, for x0 5 x 5 x 1 0

0o elsewhere.

(x-xi)/h + i, for xiI 5 x 5 x i,

(3.4b) vI(x) = -(x-xI)/h + 1, for x1 5 x 5 x i+I

0 elsewhere,

for 11 i n-1.

(3.4c) vn(x) = (x-xn )/h +1, for xn_ 1 5 X 5 xn ,
0o elsewhere.

This basis is uniquely determined by the property

(3.4d) vi(x) = 6iJ (0 5 i,j : n).

It also satisfies

(3.4e) The support of v (x) Is contained in the one or two

intervals which contain x .

n
A function u e Sh can be expressed In the form u(x) = uI v I(x), where

i=O

18



U, = u(xi). The equation (3.3) is now equivalent to the system of equations

n

(3.5) ,u B (v v ) = 0, J = 0,1,..., n.
1i=

Because of property (3.4e), B h(ViVv) = 0 if li-il > 1. A simple calcu-

lation shows that

Bh(vv) = _2 o hh 0o3 PO +  h 2qo' ,

B (Vvv+ n-+ h h

(3.6) h n n 3, n n'

1) ) l nqn-11, i
Bh (V'VI) h (p I2 + + - hq - n-

P 1

Bh(vV + 2, 05I5n-1.
h 1+1 h

Here, pj Pj(A) denotes p(Jh,A), where j is an Integer or half-integer,

and similarly for qj = q (A). Multiplying the equations (3.5) by h, we

obtain a system of equations:

(3.7) A(A)u = 0,

where u = u 1,.p .. ,u )T and AA) is the matrix

(bo-a0 ) -b0

-b (bo+b-a) -b
0 0 11 1

-b (bl+b2-a) -b
1 1 22 2

(3.8) AG) =

-b n 2  (b n 2+b n --a n_ ) -bnl

-b (b -a)
n-1 n-i n

The matrix coefficients here are
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7 h h7, ( A )
an(A) = - qn(A) + h--(A) p (A).

a(A) q (A) ha31(A)
(3.9) n 2

a CA) = h2qi(A), for 1 S i S n-1,

b (A) = p 1(A), for 0 S I s n-1.
1

Recall that we have assumed (for I = 0,1) that either p1 (A) 0 0, or

IA) > 0. If o(A) 0 0, then u0 = 0 and the first row and column in

ACA) are omitted. If 131(A) a 0, then un = 0 and the last row and column
%n

are omitted. Thus A(A) is an mxm matrix, where m can be n- 1, n or

n+ i. We shall continue to confine our calculations to the generic case

1* p(A) > 0, for I = 0,1. In this case, ACA) is an (n+)x(n+1) matrix.

The standard assumptions (Si) - (S3) in §1 Imply that the a i(A) and

b (A) are continuous functions, and b (A) k > 0. The monotonicity

assumptions (MI) - (M4) imply that the functions a (A) are strictly Increas-

ing and the b (A) are nonincreasing.

Remark. The finite difference method leads to almost the same difference

scheme as (3.7). Using the difference operator AuI = (u 1-u 1)/h,1 +- i--
2 2

and approximating the differential equation in (1.1) by the difference equa-

tions A(pIAu i)+qIui = 0, we obtain all of the equations in (3.7) except

the first and last equations (corresponding to the first and last rows of

ACA)). For the discretization of the boundary conditions in (1.1), a standard

procedure is to discretize the derivative u'(0) by (u l-u_ 1)/2h, the der-

vative u'(1) by (u n+-u n1)/2h, and to extend p(x,A) slightly outside of

the Interval [0,1] by reflecting values about the endpoints x = 0 and

x = 1. If we carry out this procedure, we obtain new first and last equations

2which differ by O(h2 ) terms from the old first and last equations in (3.7).

20
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*, Therefore, we may regard the first and last equations in (3.7) as discretiza-

*. tions of the boundary conditions In (1.1). We may also regard the first equa-

tion in (3.7) together with the equation u0 = 13O(A), as a discretization of

the initial conditions in (1.4).

If we set v = pu', then the second order equation (1.4) is converted to

a first order system

u' = vlp,

(3.10) v" = -qu.
u(O) = 0, v(O) =-p(0)%.

The first n equations (3.7) are equivalent to the difference scheme

I U Ui-1 + phIv I,
h

( 3 . 1 1 ) 2 "
V, vl_ hq -l-1 ,

,

where v, P1 u't hull. This is an implicit, general one-step method,

2

which converges to the solution of (3.10). (See, for example, Hairer, Norsett

and Wanner [91.) Therefore the discrete solution u1  of (3.7) (with the last

equation omitted) converges to the continuous solution u(x,A) of (1.4), and

the discrete derivative u' - u1 - u_ 1 converges to u'(x,h).
h

U,,
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4. Application of Sturm Sequences.

Let A(A) be the finite element matrix (3.8). The Sturm sequence

S 0)(A)S (A)....S n+(A) for ACA) is defined as follows. S (A) = 1, and

for 1 : 1 n+ 1, S I(A) is the it h principal minor of A(A):

(bo-a0) -b0

-b0  (bo+bl-a ) -b1

-b1 (b +b 2-a) -b2

(4.1) Si(A) =

-b 1 -3  (bl_ 3 +b- 2 -a 1-2) -b 1-2

-bi_ 2  (b 12+b l-a il

(In the case I = n+1, b = b is defined to be zero.) The Sturm
n

sequence should not be computed directly from its definition (4.1), but from

the recursion relation

,=(b +b-a)S - b2_lS1 , for 1 :5I S n-1,

4(4.2)
S = (bn-a )S - b_ S
Ln+1 n-i n n n-i n-i'

which follows from the cofactor expansion of the determinant S by its
1+1

last row. Note that S n+ = det[A(A)]. The main significance of the Sturm

sequence is that it can be used to approximate the zeros of det[A(A)]

(which, in turn, approximate the elgenvalues of (.1)). See Stoer, Bullrsch

4%

(17] for the application of Sturm sequences to linear eigenvalue problems.

Definition 4.1. For a given A In (AA ), c(A) Is the number of sign

changes in the sequence S (A),S (A),... S (A), after the zero terms (if
0 '1 n+l

any) have been omitted from the sequence.
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The following theorem, which is proved in Greenberg [7, §41, gives the main

facts about the Sturm sequence (4.1).

Theorem 4.1. Let A(A) be the finite element matrix in (3.8). Suppose that

(1.1) satisfies the monotonicity assumptions (Ml) - (M4). Then:

(l) For any numbers A' < A" in (AI,A 2 ), det[A(A)] has exactly

c(A")-c(A') different zeros in the interval [A',A").

(2) The zeros of S (A) and S (A) are interlaced, for 1 : i 5 n+1.

* If (1.1) also satisfies either the limit assumption (12) or (L3), then:

(3) For any A0  In (AA 2) , det[A(A)] has exactly c(A ) different

zeros in the interval (AVAO0

If (1.1) satisfies assumptions (Ml) - (M4), (Li) and either (L2) or (L3),

then:

(4) det[A(A)] has exactly n+ 1 different zeros in (AA2

We shall now use Sturm sequences to study the discrete problem. The

initial value problem (1.4) is discretized by the first n equations of the

system (3.7), together with the Initial condition u0 = Ro(A). Let u

(0 : i 5 n) denote the solution of the discrete initial value problem.

Theorem 4.2. u. = t S (for 0 5 i S n), where tt = o/(b 1bt_ 2 ... b0 ii 12 0

(oIf A = A in limit assumption (L3), then the interval (AA 0) should

be replaced by [AIA ) in conclusion (3), and (AA2) replaced by
10 12

[AlA 2) in conclusion (4).

This assumes that 0 (A) > 0. See the remark following the theorem, for

the case PO(A) = 0.
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Proof. Consider the first (+1) equations of (3.7):

(bo-ao)u 0  - b0U1 =0

-bou 0  + (bo+bl-a1)u 1  - b1u 2  0

(4.3)

-b -2u 1 2 + (b 12+bl-1-ai11)u - bi11U I  = 0

-b- 1 u1- 1 + (b +b -aI)u = b ul+"

b u Sblu~1i+1Ii whc

We can solve for u i using Cramer's rule, to obtain u I = I which
i+1

can be written:

(4.4) uI+_1 1 1 U

Si+1 bI E i" *

First suppose that all S *0 and all u 0. Letting uI/S i  t i,

(4.4) shows that t1+1 = t /b Thus tt  = t i-/bl 1  = t 2/(b i b 1-2

-t/(b b b). Since u = 10 and So = 1, to = 13 and
0 i-1 1-2-~ 0 0 0 an0 ,t n

t i = 0o/(b 1 b 1 2 ... bo).

Now consider the case where some u or S are zero. Note that two

consecutive u cannot be zero, and two consecutive S cannot be zero.

This follows from the recursion relations (4.2) and

(4.5) -b i-1 uli1 +(b11 +b -aI)u I-bIui+ = 0.

If u, = 0 = u 1 +, then (4.5) implies that u 1 _ = 0. (Recall that

bi_ 1 = p1 0). Similarly, 0 = u 1 = u = uO , which contradicts

1-2

u 0 = 30 * 0. In the same way, (4.2) implies that two consecutive S are not

zero. Equation (4.4) may be written u1 S = b U1 i S, which shows that
1+1 1 1

u, = 0 if and only if S = 0. If u, = S = 0, then equations (4.2) and

(4.5) imply

24
24a



b
i-1 2(4.6) u i+1 bi Uil, S1+1 =_ -b i_l1S I_1 ,

Theefreutl_ u _
Therefore S _ U 1 . so that t =t /(bb ) even if

ui = S, = 0. Q.E.D.

Remark 1. In Theorem 4.2, we have assumed that %CO(A) > 0. If f0(A) o,

then the first equation in (3.7) is omitted, u0 = 0, and

(bo+bl-a ) -bI

-b1 (bl+b2-a2) -b2

(4.7) S, =

-b1 2  (bi 2+b -1 -ai1 l) -bi_ 1

-b (b +b-a)

In this case (4.4) is replaced by

u1 +, _ 1 ui
(4.8) S1  b, Si..'

and so u, = tiS i 1  (for 1 5 i n), where ti =tI/(bii b 1-2-.bI), and

tI = u1 *0 . Thus, if go = 0, then all t have the same sign as u1. If

go > 0, then Theorem 4.2 shows that all ti > 0. In both cases, the solution

(Uo,u1 ... Pun) of the discrete initial value problem has the same number of

sign changes as the Sturm sequence So,S 1 .... S n . (Note that if 0 > 0,

there is an additional function S n+ , which has not been Included in the

last sequence.)

Remark 2. Theorem 4.2 indicates that we can expect overflow to occur, If we

attempt to calculate S for small h. For u can be expected to have
I I

moderate size, since it is the discrete solution of the Initial value problem

25
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(1.4). But St = u/t 1, where 1/t = b ... = [PIP3... I
RIOl) 0" 102

% tnp Wldx

SI eo-- This observation illustrates how how the closure methodLO)

can give insight into a numerical process.

Note that the matrix A(A) and all the functions derived from it depend

on the mesh size h. We shall now exhibit this dependence explicitly:

A(A) = A(h,A), S, = S I(h,A), c(A) = c(h,A), u = u I(h,A).

Theorem 4.3. Suppose that (1.1) satisfies the monotonicity assumptions

(Ml) - (M4, A1 < A < A2 ), and A is not an elgenvalue of (1.1). Then

lim c(h,X) = N(A).
h-0O

Proof. We shall assume that %O(A) > 0. The case 0(A) 0 is similar.

(See the remark at the end of the proof.)

Let c 0h,A) be the number of sign changes in the sequence

SohA) ( SIh,A),,. Sn(h,A). (Note that the last function Sn has been

omitted.) By Theorem 4.2, c (h,A) equals the number of sign changes in theo0

sequence u0 uI ... un  (because all t I > 0). If u(1,A) * 0, then, as

h--O, c (h,A) approaches the number of zeros of u(x,A) in (0,1). Thus

lim c (h,A) = N (A). (The possibility u(1,A) = 0 will be considered below.)
hO 0 0

We shall now look for the relation between the last function S n+alnd

the correction term o(A). By the recursion relation (4.2),

S =(b -a)S-b Sn. Using the relations u1 = t S and
n+l n-i- n n- n-i n-* I I

ti = ti/b I from Theorem 4.2, we obtain

If the coefficient functions in (1.1) can be extended continuously to
A = AV then Theorem 4.3 is valid for A 1  A < A2 .
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Sn (b n-an)un/t -b 2  /t

t n- nn n- -
n

or

t n Sn+1 (b n --a n)u n- b n -Unl .

Using the formulas (3.9) for bnl a n , this becomes

tn n+I =(n- 3,n-f--qn)Un -pn_-Un-1
2 2

2h 2

h-pnu + p 1(un-u -qnUn
913n n - n n- 2

2

hPnlaU +gunUnJ]- (Pn-P_)(Un-Un )-2nUn

91 1 n _Hlhnn-n_-_2'nn

Letting u' - Un-1 we have shownn h

(4 .9 ) t S n+ - t U n+ 13 u ' l I + 0 (h  2 )

Recall that u(M) = a(A)u(I,A) +13I(;)u'(1, 0. Clearly alUn +flU

as h---)0. Since we have assumed that A is not an elgenvalue of (1.1),

u() * 0. Equation (4.9) shows that sgn Sn+I = sgn u(A), for small h. We

shall now consider two cases, according to the possibilities that u(1,A) = 0

or not.

Case 1. u(1,A) * 0.

For small h, c (hA) = N CA), sgn Sn+ = sgn uCA) and sgn S = sgn u =0 n' n n

sgn u(1,A). Thus sgn Sn S n+ = sgn u(l,A)u(A). Referring to Definition 2.1,

this shows that o(A) = 0 if Sn S n+ > 0, and -CA) = 1 if Sn S n+ < 0.

Therefore c(h,A) = N(A), for small h.
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Case 2. u(1,A) = 0.

In this case, -(A) = I and N(A) = N (A) +i. Since u(lA) = 0,0

u'(i,A) * 0. We shall suppose that u'(1,A) > 0. (The case u'(i,A) < 0 is

similar.) Since uA) = 01(A)u'(1,A), and u(A) * 0, it follows that

01(A) > 0 and u(A) > 0.

For small h, the approximate solution (uoU I ... u n ) will have N (A)

sign changes corresponding to the Interior zeros of u(x,A). (Since

u(1,A) = 0, there may also be a spurious sign change near the end of the

sequence.) The N (A) sign changes will occur in an Initial subsequence0

uoU 1, .... u, where the node ih is near the largest interior zero of

u(x,A).

Since u'(IA) > 0 and u(l,A) = 0, there is a point x0  In (0,1),

such that u(x,A) < 0 for x0 5 x < 1, and u'(x,A) > 0 for x0 5 x 5 1.

Correspondingly, the tall end of the solution sequence will be increasing:

u < uJ+ < ... < u (where I < J). Furthermore, there are no sign changes

" in the subsequence ui,u 1 +1'* .. uJ, and u < 0. But it is possible that

u n 0. This means that a spurious sign change may occur in the tall end of

the sequence. Of cours:, all of these things occur in the Sturm sequence,

since S = u /t . Thus, there are N (A) sign changes in the subsequencem m m 0

SoS 1 ... St; there are no sign changes in the subsequence S,S.+1...... S;

S < SJ+ < ... < Sn; and S < 0. Also Sn+l > 0, since

sgn Sn+1 = sgn u(A), for small h.

We now have two possibilities: either S < 0 or S 0. If S < 0,
n n n

then a sign change occurs between S and Sn+l

c(h,A) = N (A) + 1 = N(A). If S n 0, then a single sign change occurs ino n

the subsequence S, S + 1 ,... ,Sn + . Again c(h,A) = N (A) + = N(A). This

concludes Case 2.
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Until now, we have assumed that Bo(A) > 0. If RO(A) m O, then we must
00

delete the first row and column of the matrix A(A) in (3.8), and set

U0 = 0. Theorem 4.2 is changed slightly as indicated in Remark 1. After

these modifications, the proof is the same as above. Q.E.D.

Remark 3. In Theorem 4.3, A is not allowed to be an elgenvalue of (1.1).

If A = A is an eigenvalue, then for small c > 0, and small h, the dis-
k

crete problem has a unique eigenvalue A k in (A k-,A k+). (See Theorem A.1

in the appendix.) If we do not use quadratures in the finite element discre-

tization, then Ak A k" If this were also true with quadratures, then

Theorem 4.3 would be valid for A = A Unfortunately, this does not seem to

be true, in general. Moreover, if we were to use a pure finite element dis-

cretization without quadratures, then the matrix A(A) in (3.8) would not have

the structure necessary for the application of Sturm sequences.

Lemma 4.1.

(1) Let A < A' < A" < A2. If the interval [A',A"1 contains no

eigenvalues of (1.1), then NA') = N(A").

(2) If Ak is an eigenvalue of (1.1), then for small c > 0,

N(A k-) = N(A ) and N(A +) = N(A) + 1.
k k k k

Proof. () For small h, the discrete problem has no elgenvalues in

[AX ,A"]. (See the appendix for properties of the approximating eigenvalues

A k.) Theorem 4.3 implies that c(h,A) = N(A') and c(h,A") = N(A"), for

small h. Theorem 4.1 (I) implies that c(h,A') = c(h,A"), and therefore

N(W') = N(A").

(2) We shall consider two cases, according to the possibilities that

u(i,Ak k 0 or not.
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Case 1. u(1,Ak) O.

In this case, the number of zeros of u(x,A) in (0,1) does not change if A

is moved slightly away from A Therefore No (A k-) = No (A k ) = NO (A +. B

definition, o-(A) = 0, so N(Ak ) = N o A ) For small h, the discrete

problem has a unique elgenvalue Ak in the Interval (A k-CA k+) (see the

appendix). Therefore c(h, kC) = c(h, A k-c) + 1. Theorem 4.3 implies that

N(A +) = N(A -) + 1. This implies that o(A +) = I and o(A -C) = 0, so
k k k k

N(A k-) = N(A k ) and N(A k+) = N(A k ) + 1.

Case 2. u(1,A) = 0.

In this case, 1(A) = 0, ( -) = 0 and N(A) = N (A), for A 1 < X < A2 .

When A is moved slightly from A k to A k±, the number of zeros of u(xA)

In (0,1) either remains the same, or increases by 1. Thus each of the

numbers N (A +c), N (A -) equals either N (A ) or N (A ) + 1. As In
o k o k ok o k

case 1, c(hk +) = c(h, Ak-c) +1, for small h, and therefore

N CA k+0 = N (A k-) + 1. This Implies that No (A k-c) = N o(A k ) and

NCo k+) = No (A k ) +1. Q.E.D.

Lemma 4.2.

(1) If (1.1) satisfies the limit assumption (L3), then Si (hA + ) 0

for all h = 1/n, and 1:5i Sn+I.

(2) If (1.1) satisfies the limit assumption (L2), then there exists

h0 > 0 and A0 In (Ah,A2)' such that Si(h, O 0 0 for all h = 1/n < hO ,

and 1 :i 1 n+ 1.

Proof. (1) In Greenberg [7, Lemma 3.31 it is shown for a matrix A of type

(3.8), that if b 1 0 for 0 : i : n-i, and ai 5 0 for 0 S 1 5 n,

then detfA] 0 0. Referring to (3.9), we see that this implies (1).
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(2) Assumption (L2) Implies that irm q (A) = -m. Therefore there is a .1

A0  in (A,A 2 ) such that q (AO ) < 0. Referring to (3.9), we see that

a I(h, A ) < 0 for all h = i/n, and 1 : I : n- i, while b (h, A) > 0 for

all A, h = 1/n and 0 5 I : n- I. We must still deal with a and a
0 n

(Recall that If Po(A) 0 0, then the first row and column of A(A) in (3.8)

are omitted, so a does not occur. Similarly, if l(A) 0 0, then a
0 n

does not occur. Therefore we may assume that go(A) > 0 and l(A) > 0.)
h2h haO( A )

Define ao(h,A) = --qo(A), bo(h,A) = pi (A)h- h- p(A),

_2 2
a (h,A) =--q(A) and b (hA) = p 1 )(A)+ h Then
n 2-n n-i - +h31-(7Xp(An

2

ao(hAo) < 0, a n(h,Ao) < 0, bo-ao = bo-ao and b n--an = b n--a . We

must show that bo(h,A 0) > 0 and b n-(h Ao) > 0 for small h. Let

m = max p(X, A) and recall that p(x,A) 2 k > 0, by assumption (M2). Then
O~x~0

bo(h, O )  k- hIj,(O)m and b Ch, A0 -) (--)m. Let

ho = min( {I -(AO-I , m I -l( 1 ). Then boChAo) > 0 and b Cho) > 0, for
m ( 0) m a1(AO) 0 '0 n-i 0

0 < h < h. Q.E.D.

A Second Proof of the Shooting Theorem.

(1) Suppose that (1.1) satisfies the monotonicity assumptions (Mi)-(M4).

Lemma 4.1 shows that N(A) is a piecewise constant function, with jump dis-

continuities at the elgenvalues Xk' and N(A k-c) = N(A k), N(A k+C) = N(A k)+.

Therefore N(A")-N(A') equals the number of jump discontinuities in

[A',A"), which equals the number of elgenvalues in [A',A").

(2) By definition of the eigenvalue Ak, u(x,A k ) has exactly k-1

interior zeros. By definition of N(A), N(Ak ) = k- i. For Akk 1 < A 5 Ak'

N(A) = N(A ) because the interval [,A k ) contains no eigenvalues of (1.1).

Thus N(A) = k-i for Ak- < A 5 A Now suppose that

N(A') j < k < N(A"). Then the interval [A',A") contains exactly k-j
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eigenvalues and A' 6 AJ+ < ... < Ak < A".

(3) Suppose that (1.1) also satisfies either limit assumption (L2) or

(L3). By Lemma 4.2, there exists A0  such that S (h,AO) 0 0 for small

h = 1/n, and 1 : i : n+1. This implies that c(h,A ) = 0. If A0  is not

an elgenvalue of (1.1), then c(h,A 0 N(A ), for small h, and therefore

N(A0 ) = 0.

Suppose that A0  is an eigenvalue of (1.1). For small h, the discrete

problem has a unique eigenvalue A0  in (A o-C,A 0+) (or in [OOA 0+c), if

A0 = A I). Theorem 4.1 (1) implies that c(h, A 0+) = c(h, 0-6 +1. But since

c(h,A) is a nondecreasing function of A, and since c(h,A0 ) = 0, it

follows that c(h,A -) = 0. Therefore c(hA 0o+c) = 1, for small h. Since

c(h, A0 +) = N(A 0o+c), this implies that N(A 0o+c) = 1. By Lemma 4.1,

N(A o+-) = N(AO ) +1, therefore N(AO ) = 0. Now (1) implies that (1.1) has no

eigenvalues in (AA O), and N(A) = 0 for A1 < A 5 A0 " If A > AO, then

any eigenvalues in [A ,A) are contained in [AOA), and the number of these

eigenvalues is N(A)-N(AO ) = N(A). Q.E.D.
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5. Sturmian Theorems for the Discrete Problem.

In this section, we shall prove discrete versions of the Sturm compari-

son, oscillation and separation theorems. For 1 : i : n, let A i(A) be therI

ixi matrix which is the upper left corner of the matrix AA) in (3.8):

(b0-aO) -b0

-b0  (bo+b -a ) -b1

-b 1 (b1+b2-a 2 ) -b2

(5.1) Ai(A) =

-bi_ (b _+bi_-ai_) -bi_
-1-3 (b1-3 +b-2a 1-2 ) b1-2

-bi_ (b _+bi_-ail
-1-2 (b1-2 b 1-a 1-1

thS = det[Ai(A)] is the I function in the Sturm sequence for A(A). The
I I

Sturm sequence for A i(A) is SOIS2 .. S I'

Definition 5.1. For I i n, and for a given A in (A1 ,A,), riA) Is
Lp.

the number of sign changes in the sequence S (A),S (A) ..... (A), after the

zero terms (if any) have been omitted from the sequence.

(Note that c (A) has been defined for 1 i 1 : n. We shall not use the
1

notation c (A) for c(A), or A (A) for A(A).) The following theorem
n+1 n+1

is proved in Greenberg [7, Theorem 3.21.

Theorem 5.1. Suppose that

(1) a.(A) is a strictly increasing function, for 0 < j : i- 1,J

(2) b (A) is a nonincreasing function, for 0 : J i - 1,

(3) b (A) has no zeros, for 1 J : i-2.

Let A' < A" be numbers in (AI,A 2 ). Then det[Ai(A)] has exactly

c (A")-c (A') different zeros in the interval [A',A").
i I

33



In the present situation, where A(A) is the finite element matrix corres-

ponding to a discretization of (1.1), bj = p 1 > 0, so condition (3) in the

theorem is satisfied. If (1.1) satisfies the monotonicity assumptions

(Ml) - (M3), then conditions (1) and (2) are also satisfied. Note that

assumption (M4) is not required, because I(A) and 01(A) appear only in

the last row of A(A), so they do not appear in any of the matrices AI (A),

1 i : n.

Let B = B(A) be the nx(n+l) matrix obtained from A(A) by deleting

the last row:

(bo-a0 ) -b0

-b0  (bo+b -a ) -b 1

(5.2) B =

-bn_ (bn_+bn_-an_) -bn_
-bn-3 (bn-3b n-2a n-2 ) bn-2

-b (b n42b -an) -b
n-2 n-2+ n-i n-i n-i

Let u = u(A) (u 0 (A) 1 ( A))T be the solution of the discrete

version of the unitial value problem (1.4). In other words, u is the solu-

tion of

(5.3) Bu = 0, uo = (A)

We shall usually assume that RO(A) > 0, with an occasional remark on the
0

case R O(A) 0. Although B and u depend on the mesh size h as well as

A, we shall usually suppress h from the notation, since the mesh size will

usually be fixed, in this section.

The last n- I equations of (5.3) are

34



(5.4) -b 1 u1 _ + (b +b -a )U -b u+ I  0, for 11 i S n-i.
i-1 i-1 i-i I i I 1 +

This implies that two consecutive terms ui,ui+ 1 cannot both be zero. (We

have already discussed this after equation (4.5), which coincides with (5.4).)

Also, (5.4) Implies that If ui = 0, then ui 1 ui+ I < 0 (since all b. > 0).
1 1J

Definition 5.2. We shall say that u(A) has a sign change at u (A) If

either u (A)u (A) < 0, or u (A) = 0.
-J-1 j J-1

Note that if uJ_1 = 0, then j-1 > 0 and u J2uj < 0.

Theorem 5.2 (First Comparison Theorem). Suppose that (1.4) satisfies the

monotonicity conditions (MI) - (M3). Let A < A2 be numbers In (AIA 2)

Then:

(1) u(A 2 ) has at least as many sign changes as UA ). Furthermore,

u(A ) has more sign changes than u(A ) if and only If u (A) has a zero in
2 n

the interval [XIA 2

(2) If the Ith sign change for u(A ) occurs at uJ (A ) and for

u(A2 ) at u (A2), then j j 1. Furthermore, 2 < j if and only if
2 ~j2 2 2 1

u J(A) has a zero in (A1,A2).

Proof.

(1) By Theorem 4.2, u(A) has the same number of sign changes as the

Sturm sequence S (A),S (A),....,S n(A) for A n(A). Therefore u(A) has

exactly c (A) sign changes. By Theorem 5.1, cn(A ) cn(A2) Furthermore,
n. n 1 n2

c (A ) < cn(A ) ii and only if S (A) = u (A)/t (A) has a zero in [A A
n 1 n2 n n n 1l'2

(2) Similarly, the sequence u (A), u (A)..u (A) has exactly c.(A)

sign changes. By assumption, c J(A I) = I. Since c (A ) c JI(A ) the

sequence u (A 2 ),u(A) ( .... J(k) has at least I sign changes. Therefore
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2 J" Furthermore, J < J if and only if u0 (A2 ), u1 (A2 ),....u (A

has more than i sign changes. The latter is true if and only if u (A)
Ji

has a zero in [AA2). However, since a sign change occurs at u (A
12 Ji 1

Definition 5.2 implies that uJ(A 1 ) 0. Therefore the zero must occur in

(A1 , A2 ). Q.E.D.

Remark. In Greenberg [7], Sturm sequences are discussed from an axiomatic

standpoint. It is noted there that one of the axioms implies the following

fact: If S i+(A O ) = 0, then S I(A)S i+(A) > 0 for A0 - < A < AO ' and

Si(A)S +1(A) < 0 for A0 < A < A0 +. Thus, as A increases past A, a

sign change Is generated between S I(A) and S i+1(A). Of course, the same is

true for u i(A) and u +1(A). If u I(A)u i+(A) < 0, then as A increases,

u.+1 
(A) cannot change sign before ui(A) does. This means that, as A

increases, the sign changes move from right to left. Also, if

u 1(A)u I(A) > 0 and u I(A)U () > , then ui (A) cannot have a sign

change before both u i1(A) and u+1(A). For if u I(A) =0 , then

u. _1 (A0 )u i+(A ) < 0. This means that sign changes cannot appear spontaneous-

ly in the middle of the sequence. They must start at u n(A), and move to the

left. This is exactly what happens to the zeros of the solution u(x,A) of

the continuous problem (1.4).

The following lemma is proved in Greenberg [7, Lemma 3.2]. (There is a

slight difference in notation, for two reasons. First of all, the first row

of A(A) is here indexed by I = 0, while in [7], it is indexed by I = 1.

Second, we assume here that none of the b have zeros, while in [7], this

assumption is made only for the first n- 1 values bJ.

Lemma 5.1. Suppose that, for 0 : j : n- I,

(1) a (W) is a strictly increasing function,
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(2) b (A) is a nonincreasing function,

(3) b (A) has no zeros.

Then, for 151 5n, b -b 2  S-1 is a strictly decreasing function on
i_1-i 1  S,

any interval which contains no zeros of S i(A).

As before, condition (3) is automatically satisfied here, and conditions

(1) and (2) are implied by the monotonicity assumptions (MI) - (M3). We shall

use the following notation:

(5.5) uj = (u-u i_1 )/h, for 1 5 1 n.

Theorem 5.3 (Second Comparison Theorem). Suppose that (1.4) satisfies the

monotonicity conditions (Ml) - (M3). Then, for 1 5 1 5 n, p loo() u is a
U- u(A7

strictly decreasing function on any interval which contains no zeros of

u.(A).

Proof. By Theorem 4.2, ui = tI S where t, = 13o/(b 1 b 1 2 .. .bo. There-

fore u 1  b S and
ui i-1 S,

p 1()u- =bi-, u ub_ u1- 1  Ib b 2 S -1 ) The theorem
1 00' i 11. b '4~j7I  h u h u h 1-1-iIS--

now follows from Lemma 5.1. Q.E.D.

Remark. If %3O(A) 0 0, then the first row and column of A(A) in (3.8) must

be deleted, and u0 = 0. The conclusion in Lemma 5.1 is changed to:

b -b2SiL is a strictly decreasing function. (This now agrees with the
I Ii

notation in [7].) In this case, b ib 2 SI-1 = hp 1 so the conclu-
1 12 u1+1

sion in Theorem 5.3 remains the same, except that 2 5 1 :5 n. (For i = 1,

1 b which is a nonincreasing function.)

2 1

The following lemma is implied by Lemmas 3.4 and 4.2 In Greenberg [7].
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Lemma 5.2. Suppose that (1.1) satisfies assumptions (M2) and (Li). Then

lim Si(A) = (-1)i, for 1 : 1 5 n+ 1.
A-*A2 1

Theorem 5.4 (Oscillation Theorem).

(1) Suppose that (1.1) satisfies (Mi) - (M) and (Li). Then there is a

number h0 > 0 and an Integer m, such that for mesh size h < hO, and

h = i/n, the discrete problem has eigenvalues Am < Am+1 < ... < A

(2) Suppose that (1.1) satisfies (Ml) - (M4), (Li) and either (L2) or

(L3). Then, for any mesh size h = i/n, the discrete problem has eigenvalues

A1 < 2 < ... < An+l

In (1) and (2), the elgenvector uW , corresponding to Ak' has exactly

k- I sign changes.

Proof.

(1) If u(A) is a solution of the discrete initial value problem (5.3),

then u(A) has exactly c (A) sign changes. If A is an eigenvalue of~n

(1.1), then u(A) also satisfies the last equation in (3.7), and

det[A(A)] = 0.

Let A1 < A0 < A2  and suppose that A is not an eigenvalue of (I.I) %

and N(AO) = r-i. Theorem 4.3 implies that there is a number h > 0. such
0 0

that when h < ho, then c(h,AO) = N(AO) = r-i. We may suppose that h

is small enough, so that h0 < I/m. In the following, we assume that h < hO.

By Lemma 5.2, lm S I(h,A) = (-1) w. This Implies that for A near A2,

c(h,A) = n+1. Since c(h,A O) = r-i, Theorem 4.1 (1) implies that the

discrete problem has c(h,A) -c(hA) = n-m+ 2 eigenvalues in the Inter-

v [AOA). We shall denote them by < < < < - where A0 < A "0, b m m+l "' n+' 0- m

and An+1 < A. Since Ak is the only eigenvalue in [Ak' Ak+1),
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c(h, Ak) = c(h,A k ) + 1. Also c(h,An) = c(h,A) -1 = n. This implies that

c(h,Ak) = k- i, for m : k : n+ 1. At any elgenvalue ARk

Sn+1 (h,Ak) = det[A(h, Ak)] = 0. Therefore c(h,Ak) = Cn(h, Ak). This shows

that the eigenvector u = u(A k ) has exactly k- i sign changes.

(2) If (1.1) also satisfies (L2) or CL3) then Lemma 4.2 Implies that A0

can be chosen so that c(hA ) 0, for small h. In this case, m = 1.

Q.E.D.

We shall conclude this section with a discussion of the Sturm separation

theorem. This theorem does not involve a parameter A. It asserts that if

u(x) and v(x) are linearly independent solutions of

(5.6) (p(x)y')' +q(x)y = 0,

then the zeros of u(x) and v(x) are interlaced. Let C be the

(n-l)x(n+l) matrix, corresponding to A(A) in (3.8), with the first and

last rows omitted:

-b 0  c 1  -b1
15

-b 1  c2  -b2

(5.7) C=

-b c -b 2

n-3 n-2n-

-b 2  cn-I -bni

where c = bi_ 1 +b1 - a. Here, the coefficients bi,cI are constants,

with b i > 0. The discrete problem corresponding to (5.6) is

(5.8) Cy = 0,

T
where y = (yO,y i f ... ,y) . As before, if y is a nontrivial solution of

(5.8), then two consecutive terms y,,yi1, cannot both be zero. If y1 = 0

(where 1 : I : n-1), then y.1 y1 4 1 < 0. However, in the present situa-
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tion, the possibility that yO = 0 is not excluded. We continue to use

Definition 5.2 for the position of a sign change. In particular, if yO = 0,

then y has a sign change at y1 "

TDefinition 5.3. The discrete Wronskian of u = (UoU 1 ... unT and

v = (voV ... vn)T is w(u,v) = (WowW...., n-1), where

Wi  uiVi -v ui+ , for OSi :Sn-I.

T T
Lemma 5.3. Let u = (uo,u1, .... u) and v = (voV 1 ... V n be solutions0' 0'n

of (5.8), and let w(u,v) = (Wow 1 ... ,Wn-i).

(i) u and v are linearly dependent if and only if w(u,v) = 0.

(2) biw = bow0, for i:S5 5n-1.

(3) If u and v are linearly independent, then wi * 0 for

0 :5i n- 1, and the wi all have the same sign.

Proof.

(i) We may assume that neither u nor v is the zero vector. If u

and v are linearly dependent, then there Is a constant c such that

v = cu. Then wi = uivi+ I - v lui+ 1 = uicui -cuiu +1 = 0. Conversely, sup-

pose that w(u,v) = 0. Then ulv 1~ -v lu1 +1 = 0, for 0 5 1 S n-i. If

vi  0 for 0 S i S n, then ul _ U1+1. Thus H-o - u .. Un = c, and
V 1  V 1 +1  V0  V1  V n

u = cv. If v i = 0, then the relation utv 1 + 1 -vIu i + 1 = 0 implies that

u= 0, since v *+1 0 0. (Or, if I = n, u nlV n - vn lun = 0 implies that

u =0.) Let c=-u 1 (or if i=n, c = ui), and let y = u-cv.n V1+ 1  Vn- 1

Then y is a solution of (5.8) and two consecutive terms yi,Yi+ 1 are zero.

Therefore y = 0 and u = cv.

(2) The equations (5.8) for u and v are of the form
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-b J-UJ_1 +cu - bju = 0,

(5.9)

-bJ- J 1+c -Vi by = J 0.

Multiply the first equation in (5.9) by vj, and the second equation by uj,

and then subtract. This gives the equation bJ-lWJ_1 = bjwj, which implies

that bjwj = bJ1 wJ_1 = b j2wj_2 = ... = bwO .

(3) This follows immediately from (2). Q.E.D.

Theorem 5.5 (Separation Theorem). Let u = (Uo,U1 ... ,un)T and

v = (vov 1, ... vn)T be linearly independent solutions of (5.8). Suppose that

u has a sign change at uI and at u (where I < J), and no sign changes

between these. Then v has a sign change at some vk' where i : k : J.

Proof. Since u cannot have a sign change at uO, 0 < i. The sign changes

at uI and u imply that u I- , u 0,u*0, u ilU j : 0 and u* 0 O.

Since u has no sign changes between ui and uJ, we may suppose that the

terms ui,u 1+I .... J-2  are all positive ui I <, uj_ 1 > 0 and u < .

Suppose that v has no sign change in the indicated range. Then we may

suppose that v_ 1, vi ... vj 2 ,vj 1  are all positive, and v > 0. Let

w(u,v) = Wow... Wl). Then wi_1 = uiivi-vi_lu i < 0 and

w j 1  U j-v-v j lui > 0. This contradicts Lemma 5.3 (3). Q.E.D.
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6. An Incorrect Algorithm.

th
We shall consider an alternative algorithm for calculating the n

elgenvalue of (1.1). Let u(x,A) denote a solution of the initial value

problem (1.4), and let

(6.1) u(x,A) = X I(A)u(x,A) + 1 O(A)u'(x,A).

It might seem natural to count the zeros of u(x,A) (for fixed A), rather

than counting the zeros of u(x,A), with a correction using u(1,A), as in

§2. In other words, if

(6.2) N'(A) equals the number of zeros of u(x,A) in the interval (0,1),

we might conjecture the following:

Hypothetical Theorem. If (1.1) satisfies the monotonicity assumptions

(Ml) - (M4), and either the limit assumption (L2) or (L3), then for

A < A < A2 ,  (1.1) has exactly N'(A) eigenvalues in the interval [A1,A).

This would lead to an alternative shooting method for finding A . However,F n

the above Hypothetical Theorem turns out to be false. Indeed, it is already

false for linear elgenvalue problems. It depends on monotonicity properties

of elgenvalues, which are valid for Dirichlet boundary conditions, but not for

general boundary conditions. Because of this, the alternative shooting method

does not always work. We shall presently given an example where the alterna-

tive shooting method fails. This section has been included, because we

believe that it is useful to point out that a numerical method can fail. It

is especially important for this method, which seems to attract believers

easily, and which may be used in applications.

Note that if u(xoA) = 0, then A is an eigenvalue on the interval
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[OX0 x , and x0  is a critical length (as used in the invariant imbedding

method). Thus N'(A) is the number of critical lengths which correspond to

A (and which are less than 1).

We shall now indicate the role played by monotonicity properties of

elgenvalues. We shall consider linear elgenvalue problems. In this case,

(1.1) has the form

(p(x)u')' + (Ar(x)-q(x))u = 0, for 0 : x 5 1,

(6.3) ou(0) + 9oU'(O) = 0,

u(l) + 1 u' = 0,

where r(x) > m > 0, and aii are constants (for I = 0,I). For

th
0 < y 51, let A (y) denote the n eigenvalue of the problem:n

(p(x)u')' + (Ar(x)-q(x))u = 0, for 0 : x S y,

(6.4) a 0{U(O) + 0oU'(O) = 0,

[(4u(Y) + 1u'(y) = 0.

For given n, we ask the following question:

(Q) Is An(y) a decreasing function on (0,11?

-" If the answer to (Q) is yes, for all n, then the Hypothetical Theorem is

true and the alternative algorithm is correct. To verify this, let u(x, A0

be the solution of the initial value problem

(p(x)u')' + (A r(x)-q(x))u = 0, for 0 : x 5 1,

d lelt( = A uo u'(0) = -0,

and let u O = u(x, O ) +f 1iu'(X, 0 If x0  is a zero of u(x,A 0 in

(0,1), then 0 is an eigenvalue on [O,x 0. In other words, AO = A kxO
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for some k. Since Ak(y) is a decreasing function,

Ak = A k(1) < Ak (x) = A In this way, each zero of u(xA ) corresponds to

an eigenvaiut less than AO. This shows that the Hyj.pothetical Theorem and

alternative algorithm are correct, If An(y) is a decreasing function, for

all n. Unfortunately, this is not true for general boundary conditions.

If the boundary condition at the right endpoint is a Dirichlet condition:

u(y) = 0, then the classical monotonicity theorem tells us that A n(y) is a

decreasing function, for all n. But Greenberg [8] has shown that if the

boundary condition at the right endpoint is not a Dirichlet condition (i.e.,

13 * 0), then for given n 0 1, there exist coefficient functions p(x),

q(x), r(x) and a subinterval [a,b] c (0,1], so that the eigenvalues AI(y),

A2 (y) ..,A (no(y) are increasing functions in [a,b]. (On the other hand, for

given p(x), q(x), r(x), CIO, Pop &V 131 there exists n1 Z 1, so that for

n n, A n(y) is a decreasing function on (0,1].) THus, we cannot expect

the Hypothetical Theorem and alternative algorithm to be correct for general

boundary conditions. We now give a concrete example where they fail.

Example. For 0 < y 5 1, consider the elgenvalue problem

(p(x)u')' + Au = 0, for 0 5 x : y,

(6.6) u(O) + u'(O) = 0,

u'(y)= 0.

The energy norm is given by %
N

(6.7) B(v,v) = -p(O)v(O)2 +  p(x)v'(x) 2dx,

and

(6.8) A(y) = inf Bvv)

1~~ 1vc 0,]11 2
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where llvii2 = Jv(x)2  dx. Putting v(x) 1 1, we find that

I 0

A!(y) < B(v,v) = -p(O) ThusA1( )- 11I y . T u
llvll 2

(6.9) A I(y) < 0.

We now consider the two algorithms (given by Theorem 2.1 and the Hypothetical

Theorem) for finding the number of eigenvalues A < 0 (for the interval

(O,y]). We must solve the initial value problem:

r-p(x)u')' = 0
(6. 10)

fu(0) = 1, u'(O) = -1.

Denote the solution by u(x), and let u(x) = u'(x). We obtain:

-pu' = constant = p(O), so that

U(x) u'(x) = -p(0)

(6.11)

S p(O t

Since u'(x) < 0, u(x) Is a decreasing function (with u(O) = 1). For a

given y (0 < y 5 1), u'(y) < 0 and either

(A) u(y) 0, or (B) u(y) < 0.

In case (A), No = [number of zeros of u(x) in (O,y)] = 0, a- = 1, and

N = N +0a = 1. In case (B), No = 1, a- = 0, and N = N +- = 1. Thus we

see that the algorithm of Theorem 2.1 counts one negative eigenvalue on

[O,y], for all y in the interval (0,1].

On the other hand, the alternative algorithm, based on the Hypothetical

Theorem counts the zeros of u(x) = u'(x) in (O,y). Since u(x) < 0,
"

N' 0, predicting no negative eigenvalues! Here we have an example where

the Hypothetical Theorem and alternative algorithm are incorrect.
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Remark 1. Greenberg (81 has shown that in the above example, A1 (y) is an

increasing function on (0,1]. Thus we have "reverse monotonicity" in this

example!

Remark 2. An error of only 1 in the integer function N'(A) can have a

fatal effect, when the bisection method uses N'(A) instead of N(A), as

described in §2. However, the error can be much larger than 1, if some

eigenvalue Ai (y) oscillates about a value A = AO .

Remark 3. The elgenvalues and critical lengths can be understood geometrical-

ly by introducing polar coordinates in the phase plane (see Scott, Shampine

and Wing [161). This is usually called the Prufer transformation. Let

2u = u(x,A) = r(x,A) cos(x,A),

1v p(x,A)u'(x,A) = r(x,A) sin O(x,A).

The point U(x,A) = (u(x,A),p(x,A)u'(x,A)) moves along a curve in the

(u,v)-plane as x varies, with A fixed, or as A varies, with x fixed.

* Denoting 8'Cx,A) - 88(xx) d '(A) =r(xA) (which conforms to our
8x ax

notation u'(x,A) - u8x ), we have
ax

U' = r'cos 8 - r9' sin 8,

(6.13) {(pu')' = r' sin e + ro' cos 0.

Setting pu' = r sin 8 and (pu')' +qu = 0, equations (6.13) imply

(r' cos 6 - pro' sin 0 = r sin 0,
(6.14)

Ir' sin 8 + rO' cos 6 = -qr cos 8.

We can solve for 8' in (6.14), to obtain

(6.15) 8' = -[q cos 2 + 1 s in28 ].

p

Also, (6.12) implies
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u' (x,A)
(6.16) tan 8(x,A) = p(x,A) u(x,A)

Equation (6.16) an,! St'rm's second comparison theorem show that as A

increases, with x fixed, the point U(x,A) moves in a clockwise direction.

On the other hand, (6.15) shows that as x increases from 0 to 1, with A

fixed, U(x,A) may move either in the clockwise or counterclockwise direction

(if q < 0). However, when U(x,A) crosses the v-axis, it moves in a clock-

wise direction.

We shall now consider the boundary conditions in (1.1). Let

tan r O(A ) = -p (O , m o o- --A )

tan r(A) = -p(,A--%(A)

Let H.(A) be the line v = [tan =(A)u in the (u,v)-plane (for

i = 0,1). The boundary condition aO(A)u(O) +( )u'(O) = 0 in ( 1) is

equivalent to tan O(O,A) = tan n0 (A), which means that the point U(O,A)

lies on the line H (A). Similarly, the boundary condition

S(A)u(l) +f3I(A)u'(l) = 0 means that U(I,A) lies on H (A). Since u(x,A)

satisfies the boundary condition at x = 0, we see that A is an elgenvalue

of (1.1) if and only if U(l,A) lies on H (A). On the other hand, x0  is a

critical length for A if u(xoA) = 1 (A)u(xoA) + 0 (A)u'(xoA) = 0, which

means that U(XA) lies on H (A).

Consider the trajectory of the point U(1,A), as A increases from A1
to AO . U(I,A) always travels in the clockwise direction, while H (A)

rotates in the counterclockwise direction, because of the monotonicity assump-

tion (M4). The number of elgenvalues less than A0 equals the number of

times U(1,A) crosses H (A). A zero of u(l,A) corresponds to a point

where U(1,A) crosses the v-axis. By Sturm's first comparison theorem, such
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zeros travel to the left in (0,1), and become interior zeros of u(x,A).

Since U(0,A) never reverses direction, exactly one eigenvalue occurs between

any two consecutive zeros of u(1,A). The correction term (A) tells us if

U(1,A) has crossed H (A) after the last crossing of the v-axis. In

effect, a proof of the shooting theorem can be given in this framework.

Now consider the trajectory of U(X 0 ), as x increases from 0 to 1

for fixed A = A 0 A critical length occurs each time that U(x,A ) crosses

H (A ) Thus we can count the critical lengths by counting the number of

times that tan e(x,A 0) = tan n1(AO). (See equation (5.3) and inequality

(5.4) in Scott, Shampine and Wing [161.) A zero of u(x,A ) corresponds to a

point where U(x,A ) crosses the v-axis. As indicated above, such a cros-

sing must occur in the clockwise direction. Between two crossings of the

v-axis, U(x,A 0) must cross the line H (A ). Thus, there is a critical

length between any two zeros of u(x,A 0). However, U(x, A ) may reverse its

direction several times between two crossings of the v-axis. Therefore,

there may be many critical lengths between two zeros. On the other hand, If

SA1 < 0 < AI, then U(xA ) never crosses the v-axis. In this case, it may

never cross H (A ), even though A I < A 0 This is what happens in the

example (6.6). This explains why the number of critical lengths N'(A O) may

be slightly smaller than N(A ), or a great deal larger than N(A 0
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Appendix

In this appendix, we shall prove some facts about the convergence of

approximate eigenvalues. The main facts are that, as h--O, the approximate

eigenvalues converge to the true eigenvalues, and to nothing else. Theorems

A.1 and A.2 make this statement precise. These facts were used in §4, especi-

ally in the proof of Lemma 4.1, and the second proof of the shooting theorem.

We are including these proofs here for the sake of completeness. For a fixed

value of A, consider the linear eigenvalue problem

(p(x,A)u')' + q(x,A)u + pu =0, for 0 5 x 5 1,

(A.1) O0A)u(M) + 0 (A)u'(O) = 0,

, [ iCA)u(1) + 1C M u'C ) =0.

Here the eigenvalue is p. The weak form of the equation is

1
(A.2) B(A;u,v) = M<u,v>, for all v e H [0,1],

where B(A;u,v) is the energy inner product (3.1), and <u,v> = uvdx. The
'p 0

monotonicity conditions (MI) - (M4) imply that B(A;u,u) is a strictly

decreasing function of A. By the variational characterization of eigen-

th
values, the k elgenvalue pk(A) is a continuous, strictly decreasing

th
function of A. The k elgenvalue Ak of (1.1) is the unique zero of

kkkA).

We shall distinguish between two discrete problems: The pure finite

element discretization, where the integrals are not replaced by quadratures;

and our discretization (3.3) and (3.7), where the integrals are replaced by

quadratures. Each of these corresponds to a linear eigenvalue problem. The

weak formulation of the pure finite element discretization is: Find u e Sh,

such that
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(A. 3) B(A;u,v) = h<uv>, for all v e Sh'

The corresponding equation for our discretization is

(A.4) Bh(A;u,v) = Ph<U,V>h, for all v e Sho

where B h(A;u,v) is obtained from B(A;u,v) by replacing the integrals by

quadratures (as indicated in §3), and <u,v>h is the trapezoid rule quadra-
* 1

ture for fouv dx. If (1.1) satisfies the monotonicity assumptions (M1)-(M4),

then the eigenvalues pk,h(A) of (A.3) and p k,h(A) of (A.4) are continuous,

thstrictly decreasing functions of A. The k eigenvalue Ak,h of our dis-

cretization (3.7) is the unique zero of Wk,h(A).

The next two lemmas estimate the errors Ik(A)-pk,h(A)l and

IIk,h(A)- 1k,h(A)I

Lemma A.1. Let A < A' < A" < A For each integer k > 0, there is a

2
constant C = C(k) > 0, so that [Wk(A)-W k h(A)l S Ch2

, for A' 5 A S A".

Proof. Let uk = u k(XA) denote an eigenfunction of (A.2) corresponding to

the eigenvalue p k(A) (such that ljukIl H = 1 ). It is known that
H[0, 1

(A.) Ik,h0A)- jk(A)l 1 C 1 In f luk V i2 1VESh H (0,1]

for A' 5 A A", where C is a constant which depends only on the coeffi-

cent functions in (1.1) (see Babuska, Osborn [3]). It is also known from

finite element approximation theory (see Clarlet [6]) that

(A.6) inf lUk- vii 1 5 C2 hliukI121
VESh H [0,11 H (0,1]

". = up''+ (q+Ik)Uk]~ Ihrfr
Furthermore, (A.1) implies that u" - I[pu therefore

k p k kk
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I?#

Ilu"II 2 < C., for A' 5 A S A", andL [0,11

(A.7) IukI.2[O, 1] -< C4 ' for A' _< A 5 A".

Inequalities (A.5), (A.6), (A.7) imply

(A.8) Ik (A)- k(A) < Ch2 , for A' < A < A".

Q.E.D.

We shall now consider the error Ilpk,hA)- Pk,h(A)I, caused by the

quadratures. We shall use the modulus of continuity m f(8) of a continuous

function f(x). Recall that m (6) = sup If(x)- f(y)I. If f(x) is con-
I x-yl _<:58

tinuous on a compact interval, then lim m f (6) = 0. For a function such as

q(x,A), which i3 continuous on

m (6,A) sup lq(x,A)-q(y,A)l satisfies: limm q (6,A) = 0 uniformly for
q jx-yI-< 80

A' 5 A 5 A". Define mq (6) = sup m q(,A). Then lim mq(6) = 0. Since
q A' <A<A" q -.0 q

ap(x, A)
8x is continuous, there is a constant A = A(A',A"), so that

m (6,A) - A6, for A' < A < A". Thus m (8) 5 A6.P P

Lemma A.2. Let A < A' < A" < A For each integer k > 0, there is a
12' r

function w(6) = wk(6), defined for 6 _> 0, such that
k

(1) lim w(6) = 0, and

(2) Ik h(A) - kh(A) I < w(h), for A' <_ A < A".

Proof. We shall use the Rayleigh quotients

B(A; u, u) B(A;uu)

(A.9) R(A,u) - <U,> R(A;u) <uu>

for A' < A < A", uE Sh '

I 1
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The eigenvalues 1 k,h (A) and Ak,h (A) are determined by

(A.1O) Ak,h (A) = min max R(A;u),

dimU=k ueU

(A.I1) kh(A) = min max R(A;u),dimU=k 
uEU

where U is a subspace of S We may assume that

2(A.12) <uu> 1, lull < M and IR(A;u)I 5 M

H (0,1]

in (A.10). Under these assumptions, we shall estimate IR(A;u)-R(A;u)I. We

shall use the notations

ao(A) 2 a(A)2

D o - p(O,Alu(O)2 + a---) p(l,X)u(1)2,

2x 1
(A. 13) E = P(X,A)u'(x) 2dx, F = q(x,A)u(x)2dx,

0 0

G = Ju(x)2dx.
0

(Under our assumptions, C = 1, but we shall not use this until later.) Let

denote the midpoint quadrature of E, and let F,G denote the trapezoid

quadratures of F,G, respectively. Furthermore, let

(A.14) e = E-E, f = F-F, g = G-G.

Note that

SD+E-F D E-P
(A.15) R(A;u) G R(DE;u) = -

G ' RG

Thus D+E-F D+(E+e)-(F+f) Using the Taylor expansion,
G+g

1- 1 g
;+g G G(1+0) 2
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WY!*;, Y 3 7-7777 v.W-

where e lies between 0 and g, we obtain

1 g_ ._ _

R(A;u) = -[1 [D+(E+e)-(F+f)]

D+E-F g fD+EF] +1[ - g M-)
G G(1+0)2 LG G 1+e)2

Using (A.12), this implies

(A.16) IR(;u)-RCA;u)l - 2g + I1- g 2 le-fl
(1+e) (1+e) s ,

where 8 lies between 0 and g. We shall now estimate lel,Ifl, and IgI.

A function u E Sh  is continuous and plecewise linear on [0,1]. On the

interval l X , , U(X) = U +U(X-x), where u= u(x ) and

u= (u -u )/h. By definition
1 1+1 1

1 n-i n-1

E = op(x, A)u'(x) 2 dx = ( +lp(x,A)dx, and . = (u)p 1 0)h.
1=0 i 1=0

n-I

Therefore e = E-E (u) (p 1 (A) -p(x, ))dx, and
Y1...dJ 1

1=0 
2

n-1 n-i

lel < m (h)h (u )2 Furthermore, h (u') 2  flut(x)2 dx S lull2 1
p 2 1 0 H 10,11

i=0 i=O

(by (A.12)), and m h) < Ah. Therefore
pY

(A. 17) lel MA

I.I

n-1

We shall consider Igi next. G .u.dx = u+u x-x =x0 x I :

1=0 

'"

n-1 n-i 3 n-i
\ (u +uhu+U (u +u2 h+1 ) - 2 .(u2+u 2

1=0 1=0 1=0 1=0 S

n-i

Therefore g -G (u)2 < Mh Thus we have shown16
* 1=0
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(A.i8) 05 g

6L

Now consider Ifl. Note that there is a value = (A), such that

xi xi+l i+ q(x,A)u(x)2dx = q(CIA) 1+ u(x)2dx. Denote

i t n-I

qi = q( iA), while q= q(xl4 A). F =f q(x,A)u(x) 2dx = l u(x) dx

n-I n-I 3 n- 1=0 I

/q 3(u1+ulu 4.l+ui+l) q i(u 6--

1=0 1=0 1=0

n-i

F (qiut+qt+l U+1, i=O

n-i 3n-1

f = F-F = h Z1 (qt-~q )u + (q -q )u 2 + h- q uj) Let

1=0 1=0
- n-i 2

Q max Iq(x,A)f. Then IfI S m (h}.h  (ui+u + +- Q u'(x) dx S

0o5xsi q~h* 2 z 1 1+1 6 fol A' A<A" I=0

n-I".: q~~ (2+ 2 Q h2 [ l u  MQ h 2  Mh 2 .

(h)h (+u u u+) + h mq(h)3 U(x) dx + h 3m (h) + - h.

q z. i1 +1ii+i qj 6 q 6
" i=O

We have shown

(A. 19) If 1 ! 3m (h) + h .

.4q 6

Inequalities (A.16) - (A.19) imply

(A.20) IR(A;u)-R(A;u)I < w(h), for A' -5 A -< A",

" where

(A.21) w(h) = h 2+(1 + h )(- h + h + 3m (h)).
6-- 2 6 q

Equations (A.1O) and (A.11) now imply

IPk, h(A) - k,h(A)I - w(h), for A' <- A :5 A".

Q.E.D
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Theorem A.1. Suppose that (1.1) satisfies the monotonicity assumptions

(MI) - (M4). Then for each elgenvalue Ak of (1.1), there is an eO > 0,

such that for 0 < c < cot and for small h, the discrete problem (A.4) has

a unique eigenvalue Ak,h in the interval (A k-e,Ak +C).

Proof. Let A1 < A' < Ak < A" < A Lemmas A.1 and A.2 imply that

(A.22) Jk,kh(A)- Ak(A)I 1 zk(h), for A' S A : A",

where Zk(h) = Wk(h) +C(k)h . Let z(h) = max(zk-(h),Z k(h),Zk+1(h)). Then

for j = k-l,k,k+l,

(A.23) (Pj,h(A)- 1j(A)I z(h), for A' 5 A 5 A".

Note that lrm z(h) = 0.
h-+O

Now since Ak  is an elgenvalue of (1.1), p k(Ak) = 0. Since Ak(A) Is

a simple elgenvalue, pk-1(A ) < 0 < Ak+1(A k). Let

m = min(IUk_ (Ak ) , k+1(A k)), and choose c > 0 small enough so that

P k- (A)l ? m/2 and pk+ (A) m/2 for A k-e 0 A < Ak +c Let

0 < c < c0 " The monotonicity assumptions (Mi) - (M4) imply that g k (A) Is

strictly decreasing. Therefore p k(Ak-e) > 0 > Ak(Ak+e). Now choose h0

small enough so that

(A.24) z(h) S m/4, for 0 < h < hO ,

(A.25) Pk(A-c) - z(h) > 0, for 0 < h < hO ,

5kk

and

(A.26) Pk(Ak+c) +z(h) < 0, for 0 < h < hO .

The inequalities (A.23) - (A.26) Imply (for 0 < h < h0

(A.27) k,h (Ak- ) > 0, Pk,h(Ak+C) < 0,
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(A.28) k_1,h (A) < 0, for A k-C A 5 Ak +C,

and

(A.29) Pk+l,h (A) > 0, for Ak-C : A 5 Ak+ .

This implies that pkh(A) has a zero Ak,h in (Ak- C,Ak+), and for

i * k, Pi,h (A) has no zero in (Ak-CA k+C). Q.E.D.

Remark. If (1.1) satisfies the monotonicity assumptions (Mi) - (M4), then the

pure finite element eigenvalue k,h(A) is a strictly decreasing function.

Let A be the unique zero of Mkh(A). The minimax principle implies that
k, h k'U

'

Ak(A) ( Pk,h(A), and therefore Ak Ak,h. These facts may not be true for

kh(A) and A If A A, h is always true, then Theorem 4.3 is also~k,h k,hW k -k,h

valid in the case that A is an elgenvalue of (1.1).

Theorem A.2. Let A < A < A and suppose that A is not an eigenvalue
1 0 2' 0

of (1.1). Then there is an c > 0, such that for small h, the discrete

problem has no eigenvalue in the interval (A -CA +C).
0 0

Proof. If the statement is false, then there is a sequence h --->0 andn

eigenvalues Ak h of the discrete problem, so that A kn h n--4 A 0 Let

un(x) be an eigenfunction corresponding to Akn hn (with Ilunil[o1] = 1).

Thus Bh (kn h;Un ,v) = 0, for all v E Sh  Since the un are bounded in

n nn n

H [0,11, there is a subsequence (which we again denote u ) which has a weak
n

limit u0  in H [0,11. Since h -->O and A - A O ,  it follows that
0n k nh 0'

B(A ;uov) = 0 for v E US h  Since US h  is dense in H [0,11, this
n n

implies that B(A0 ;uov) = 0 for all v E H [0,1]. But this means that A0

is an eigenvalue of (1.1). Q. E. D.
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